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ABSTRACT 

It iS shown that the p-summing norm of any operator with n-dimensional 

domain can be well-aproximated using only "few" vectors in the definition 

of the p-summing norm. Except for constants independent of n and log n 

factors, "few" means n if 1 <~ p <~ 2 and np/2 if 2 <~ p <~ oc. 

I. In t roduc t ion  

A useful result of Tomczak-Jaegermann [T-J, p. 143] states that the 2-summing 

norm of an operator u of rank n can be well-estimated by n vectors; precisely (in 

the notation of [T-J, p. 140], which we follow throughout), 7r2(u) < v~r~n)(u). 

No such result holds for ~rl; Figiel and Pelczynski [T-J, p. 184] showed that if 

kn satisfies 7rl(u) _< CTr~k~)(u) for all operators of rank n; n = 1,2,. . . ,  then 

k~ grows exponentially in n. The Tomczak result reduces immediately to the 
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case of operators whose domains are g~. Szarek [Sz] proved that there is a 1- 

summing analogue to this version of Tomczak's theorem; namely, that rl(U) _< 

C~r~n log n)(u) whenever u is an operator whose domain has dimension n. 

In this paper we consider the case of p-summing operators. In section III we 

extend Szarek's result to the range 1 < p < 2 (except that  the power of log n 

is "3" instead of "1"). For 2 < p < ~ we show that,  up to powers of logn, 

n~ vectors suffice to well-estimate the p-summing norm of an operator from an 

n-dimensional space. The power of n is optimal, but we do not know whether 

a log n term is needed in either result. These results, as well as those in section 

IV, shed some light on problems 24.10, 24.11, and 24.6 in [T-J]. 

In Section IV we show that  when 1 < p ~ 2 < c~, if kn satisfies ~rp(U) <_ 
CTr(k~)(u) for all operators of rank n; n = 1, 2 , . . . ,  then k,~ grows faster than any 

power of n . .  

Just as for Szarek, our main tools are sophisticated versions of embedding n- 

dimensional subspaces of Lp into gpk with k not too large. While most of this 

background is at least implicit in [BLM] and [T], we need more precise versions 

of such results than are stated in the current literature. The necessary material 

is developed in Section II. 

Here we treat only the case of p-summing operators. There is also an exten- 

sive literature on related problems for (p, q)-summing operators; see IT-J] for the 

older history and the recent papers [D J1], [DJ2], [D J3], [J]. In particular, De- 

fant and Junge [DJ2] show how results for p-summing operators can be formally 

transformed into results for (p, q)-summing operators. 

II. Preparations for the main result 

Before stating the basic entropy lemma for the main result, we set some notation. 

A d e n s i t y  on a probability space (~2, #) is a strictly positive measurable func- 

tion on ~ whose integral is one. Given a set A, a metric ~ on A, and a positive 

number t, E(A, ~, t) is the minimal number of open balls of radius t in the metric 

needed to cover A. 

We also use notation (see, for example, IT-J, p. 80]) commonly used in Banach 

space theory for measuring the expected value of the norm of Ganssian processes: 

If u: H ~ Z is a linear operator from a finite dimensional Hilbert space H into 
m 2 a normed space Z, g(u) 2 is defined to be Ell ~ i = 1  giu(ei)ll , where e l , . . . ,  em is 

any orthonormal basis for H and gx , . . . ,  gm are independent standard Gaussian 
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variables. ~ is an ideal norm in the sense that  if H '  is another finite dimensional 

Hilbert space, Z I is another normed space, T: H ' --* Z and S: Z --* Z ~ are linear 

operators, then ~(SuT) < [IS[[e(u)[IT}[. Suppose now that u is a probability 

measure on a finite set A and W is an n-dimensional subspace of the set of scalar 

valued functions on A. Let Wp denote W under the Lp(u)-norm and let i W be p , r  

the formal identity mapping from Wp onto W~ (when r = 2 we abuse notation 

by also regarding the operator into L2(u)). Sudakov's lemma [Su], stated as 

Proposition 4.1 in [BLM], gives the entropy estimate 

log E(B(Wp), II.I[L2(,), t) _< C 

The Pajor-Tomczak lemma [PT-J], stated as Proposition 4.2 in [BLM], gives the 

entropy estimate 

log E(B(W2), [['['Lp(v) ,t) ~- C ( ~  ) 2 . 

The ideal properties of g imply that  if v (respectively, #) is a probability 

measure on the finite set A (respectively, B), and Y (respectively W) is a space 

of scalar functions on A (respectively B), and v: Y ~ W is a linear operator 

which is an isometry from Yp onto Wp and has norm at most C as an operator 
" W  * " Y  * from Y2 into W2, then t(~v, 2 ) _< Ct(zp, 2 ). 

The entropy lemma we use is a variation on Propositions 4.6 and 7.2 in [BLM]. 

The result we need later is different from that in [BLM] since we cannot replace 

the subspace X of Lv(tt) by an (isomorphic or even isometric) copy of X in 

Lp(v) but rather must move all of Lp(#) isometrically onto Lp(v). Moreover, 

formally speaking, Proposition 7.2 is only partly proved in [BLM] and contains 

some unclear statements (e.g., the claim in the sentence immediately following 

(7.11) seems formally wrong and should be adjusted slightly). The accumulation 

of the adjustments needed to obtain Proposition 2.1 below from the arguments 

in [BLM] required some effort on our part, so we judged it worthwhile to outline 

proofs of the entropy estimates we need. 

PROPOSITION 2.1: Let X be an n-dimensional subspace of Lv(N,# ) for some 
probability measure # on N = {1 , . . . ,  N}. Then there is a density a on (N, #) 
satisfying the following: Put f( = {x/a~: x E X } and let B(f(~) be the closed 
unit ball o f f (  in L~(N, adg). Then for some constant C, 
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(i) logE(B(ffp), [['1[~ ,t) <_ C ( p -  1) n(logn) ( logg)2  t -p, 

[orl < p < 2 .  

(ii) [IfHL~ < (2n) 1/p [[fHLp(c~dl~)' for 1 < p < 2. 
(iii) logE(B(fCv), ]1"}]~ ,t) < C(logY)nt -2, for 2 < p < ~ .  

(iv) [If[]L~ < (2n) 1/2 [[f[IL~(~dg), for 2 < p < ~ .  

Proof: It is easy to reduce to the case of measures which are strictly positive (i.e., 

for which all points of N have positive/z measure). The conclusion is invariant 

under change of density of the original measure, so we can assume, without loss 

of generality, that # is the uniform measure on N (this simplifies slightly the 

notation below). 

Lewis [L] showed that there is a density /~ on N and an orthonormal (in 

L2(~d/~)) basis fx , . . - ,  f,~ for Y = {x/a11/v: x E X } so that ~-'~i~=1 f~ = n. 

The density a is ~-~-. Then 3C consists of all vectors of the form v(y) with y 

in Y, where v(y) = (~) l /py .  The linear operator v defines an isometry from 

Lp(~d#) onto Lp(ad#) and has norm at most 21/p as an operator from L2(Zd#) 
into L2(ad#). As mentioned before the statement of Proposition 2.1, Sudakov's 

lemma gives the entropy estimate 

log E(B(Xp), t) <_ Ct-2pnK(X) z. 

Using the fact that ( ~ ) l / 2 f t , . . . ,  (~)1/2f,~ is orthonormal in L2(ad/z) and the 

Maurey-Khintchine inequality, we get for all 1 < q < oc: 

2 .3( 1]/_~ 1 (~)1/2 ]2 
e (Z2,q) = E g~ I~ 

Lq(adD) 

~__ Cq f?)l/2 
Lq (adft) 

<_ 2Cqn. 

As mentioned before the statement of Proposition 2.1, the Pajor-Tomczak 

lemma gives the entropy estimate 

(+) log E(B(X2),  II.llLq(.d~ ) , t) < Ct-2qn. 

Pick q = log2N; then, since a > 1/2, II'lloo -< e [l'llL,(~d.). Since B(P(p) C 

B()(2) for p > 2, this gives (iii). The Lewis change of density forces, for f in Y, 
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Hf[[L~ -< nl/2 I[fllLp(~dv) (see e.g. Lemma 7.1 in [BLM]). Since ~ < 2, we have 

for f in )(  that  IIf]lLoo ~-- (2n) 1/2 HfHL~(,~d,u). This gives (iv). 

To deal with the case 1 < p < 2, we refer to the proof of Proposition 7.2 (ii) 

in [BLM]. By applying Hhlder's inequality and a clever duality argument, one 

obtains formally from (+), for 1 < t < 2n, that 

_ (C~pl(~-p)  
(++) log E(B(J(p), II'llL.(=a.> ,t) < C(p - 1)-lk--~] nlogn. 

Using, for 1 < s < t, the obvious inequality 

log E(B(2p), II'IIL, t) _ log E(B(f(p), II'llL=(~d.) ' s)+log E(B(22), II'IIL, t/s), 

(++) ,  and (iii) in the statement of the proposition, we obtain (i) for 1 < t < 2n 

by minimizing over s. Now the Lewis change of density forces, for f in Y, 

IIIIIL~ < nl/p IlfllL,(~d,). Since ~ < 2, we have for f in 2 that  Iif[lL~o <- 
(2n) 1/p ItIIIL,(~a,). This gives (ii) as well as (i) when t > 2n. • 

The following proposition and its proof is an adjustment of results from Tala- 

grand's paper [T]. (The idea of "splitting the large atoms", used also in IT], is 

due to the authors.) 

PROPOSITION 2.2: Let X be an n-dimensional subspaee of Lp(N, T) for some 

probability measure r on N = {1 , . . . ,  N}. Then there are N < M < 3N and a 

probability measure v on M = {1 , . . . ,  M}  so that: 

(i) There is a partition { a l , . . . , a n }  of M with ~]ie~j v{i} = r{ j}  for j = 

1 , . . . , n .  

(ii) lli"sup {[EM1 9iv{i}lYd p I: Y • Y' IlYll __- 1} <_ 

1 

C ( p -  1) ' (logn) ' ( l ogN) ' ,  

for 1 < p < 2, where Yl , . - . ,  yn are the coordinates of the vector y and Y is 

the image of X under the natural isometry Jp from Lp( N, p) into Lp( M, u), 

de/~ned by (Jpx)i = xj i f / •  aj .  

(iii) Esup {IE,'_-I g,~{i}ly, I p ]: y • Y, Ilyll <- 1} ___ Cpn~/4N -~/2 log n( logg)  1/2, 
for 2 < p < 0o. Cp can be taken to be Cp22 p/2. 

Proo~ It is easy to reduce to the case of measures which are strictly positive. 

Next, note that  if the proposition is true for one strictly positive probability 

measure on N,  then it is true for all of them. This is because the left hand 
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side of (ii) is invariant under a change of density ¢ if we replace the subspace Y 

of Lp(v) with its image under the natural isometry from Lp(v) onto Lp(¢dv), 
defined by T f  = f/¢l/p. Thus we can assume that 7- is the measure c~d# given 

by the conclusion of Proposition 2.1. 

Splitting the atoms of ~" of mass larger than 4/N into pieces each of size between 

2/N and 4/N produces M, the measure v, and, a fortiori, the space Y along with 

the isometry J = Jr; (i) is thus satisfied. Since J also defines an isometry J~ 

from L~(N, 7-) into L~(M, v) for all 0 < r _< oc, the conclusion of Proposition 2.1 

remains true for the measure space (M, v) (where of course X is replaced by Y). 

Let 5 be the natural distance associated with the Gaussian process appearing 

in (ii), defined for y, z in Y by 

5(y, z) = v{i}([yi[ p - [zi[P)] 2 

Let 1 < p < 2, fix y, z in B(Yp), and set u~ = [Yi[ V [z~ I. Then 

M 
z)  2 <  'i 2-2u2p-2 

i = l  

M 

<- ][Y- zHP 4p2N-X E v{i}u2p-:]Y' - zi'2-P 
i=l 

M p\ 2(p--1)/p M p\ (2-p)/p 

i=1 i=1 

-< 2 6 N - 1  Ily - zll . 

Thus by Proposition 2.1 (ii) we get that the 5-diameter of B(Yp) is less than 

24nl/2N -1/2 and from Proposition 2.1 (i) that: 

log E(B(Yp), 5, t) < log E(B(Yp), ]1"[]~2,2-3N1/2t) 

< log E(B(Yv), H']loo, 2-6/VN1/Vt2/P) 

< C(p -  1)r-=~'n(logn)~-~(logN)~N-~t-2. 

The last inequality in this last display requires t > 23N-1/2; for 0 < t < 23N -1/2 

use volume considerations in the n-dimensional space B(Y~) to get 

log E( B(Yp), 6, t) < log E( B(Yp), I1"11oo, 1) + log E( B(Y~), IIll , 2-a/V N1/Pt2/P) 

< C(p - 1)r-~-n(logn) 1-~ (log N) ~ + Cn log(CN-It-2). 
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By Dudley's theorem (see, e.g., [MP, p. 25]), 

25 

M 

i = l  
- 2  2-~ 

< 24nl12N -112 + C(p-  1)~'Z~nll2(logn) 4 (logY)~N-1/2 

-{- Cn 112 ~023N-1/2 logll2(cN-lt -2) dt 

2-'=2" ~ 1/2 f24n1/2N-1/2 
+ C(p-  1)~nll2(logn) 4 ( logN) N-  ]2~N-1/~ t -1 dt 

< C(p-  1)~SC~nll2(logn)~(logN)~N -1/2. 

This proves (ii). 

To prove (iii), assume now 2 < p < co. Fix y, z in B(Yp), and set ui = ]y~lV]z~]. 
Then 

M 

~(y, z) 2 < Z ~{i}2P2U,~P-% , - z'l ~ 
i=1 

M 

-< Ily- ~11~ 4p 2N-1E z]{i}u2p-2 
i=1 

M 

< 4P 2N-~ Ily - zl l~ IlullL -2 ~ . { i } u f  
i=1 

<__ 4p22 p/2 n (p-2)/2 
N Ily- zll~, 

where the last inequality follows from Proposition 2.1 (iv). Thus the 5 diameter 

of B(Yp) is less than 4p2p/4np/4N -1/2 and Proposition 2.1 (iii) implies: 

log E(B(Yp), 5, t) < log E(B(Yv), I1-11o~, P -12-(p÷4)/4~-(p-2)/4N1/2t) 
Cp22p/2np/2N-l(log N ) t  - 2  

as long as t >_ p2(p+4)/4n(p-2)/4N -1/2. For smaller t we get by the usual volume 

considerations, 

logE( B(Yv), 5, t) 

< log E(B(Yv), I111oo, 1) + log E(B(Yoo), I111oo ,p -'2-(~+4)z%-(~-~)/~N'/2t) 
~_ Cp22P12nP12 N-l(log N) + Cn log(Cp2Pl4n(p-2)14 N-112t-1). 
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By Dudley's theorem, 

M 

E s u p { I Z g i y { i } l y i l P l : y E  Y, ]]y][<l} 
i=1 

<_Cp2p/4np/4N-1/2 + Cp22p/2n(p-1)/2N-l(log N ) I / 2  

p20,+4)/4n(p-2)/4N-1/2 
+ Cn 1/2 / logl/2(Cp2V/4n(p-2)/4N-1/2t -1) dt 

,to 
.4p21'/4np/4N-1/2 

+ Cp2p/4np/4N-1/2(log N )  1/2 fp2(p+4)/4nO,_2)/4N_l/2 t -1 dt. 

For a fixed p the last term is dominating and one gets 

M 

E sup (1~-~ g~v{i}lyi[ p I: Y ~ Y' 
i----1 

IIYll <- 1} < CpnP/4N-1/2 log n(log N) 1/2 

where Cp can be taken to be Cp22 p/2. • 

COROLLARY 2.3: Let X be an n-dimensional subspace of Lp(N, r) for some 

probability measure r on N = {1,... ,  N} and let Lv(M, u), J, and Y be given 
from Proposition 2.2. Then there is a partition Mx U M2 of M into two sets of 

cardinality at most 7 N such that for each y in Y and j = 1, 2: 

(i) ) _< 

(1/2 + C ( p -  1) e-~ (n~½ (logn) z~- (log N) ~) []Yl[PA~,~) 
X N /  

when 1 < p < 2; while 

l°g n(l°g N) ½ ) 
p_ 2 

(ii) II < cp IIYIIL,(~,. ), 
for 2 < p < c¢. 

Moreover, (i) and (ii) hold for most such partitions of-M. 

Proof: First, notice that (ii) in Proposition 2.2 still holds if we substitute inde- 

pendent Rademacher functions for the Ganssian variables gi (and replace C by, 
e.g., v~C) .  This follows from a standard contraction principle. Consequently, 

if we again enlarge C, 

sup{lE,, {i}ly, l,l:uer, llull_<l } <C(p-1) (~) (logn)' (logN) ~ 
i=1 
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holds for most choices of signs e~ = 4-1. Since also for most choices of signs the 

difference between the number of plus signs and minus signs is less than M/8,  

(i) follows. (ii) follows similarly. • 

III. Computing p-summing norms 

Given a linear operator u: X ~ Y of finite rank, 1 _< q <__ o~, and positive integers 

n, k, define 
k k 

= - - Z u , } ,  

xi----1 i = 1  

where 

(ii) For 2 < p < o% 

n n inf {IIAII liwll IIBII ; A: X --. g~o;W: g~o --* gq diagonal, B: ga --* Y ,v  = B w A } .  

(,~,1) = u(,~), while limk-.oo u~ n'k) In Tomczak's terminology [T-J, p. 181], vq = 

~'~) gives the cogradation which is dual to the natural gradation r ('~) of the 

p-summing norm IT-J, Theorem 24.2] (or something like that!). 

PROPOSITION 3.1: Let n <_ N be positive integers; u: X --* Y a Iinear operator 

with X finite dimensional and dim(Y) < n. Then, putting q = p/(p - 1), 

(i) For l  < p < 2 ,  

~ 6 - p  P N,1)  1+ C ( p -  1) 4 (logn) ' ( logN) 4 u (u). 

1 ( ) Uq (u) <_ 1 + Cp logn( logN) ½ u~N'X)(u). 

Proofi For some probability measure r on N, we can take A: Y* --* Lp(N, r), 

B: Li(-N,T) --* X*, so that IIAII IIBII = v(qN)(u) and u* = Bip,iA. Apply Propo- 

sition 2.2 to the subspace A Y  of Lp(N, r) to get the measure space Lp(M, v) and 

the natural isometric embedding Jp: Lp(N, T) --* Lp(M, u). By Corollary 2.3, we 
- -  7 get a partition Mt U M2 of M into two sets of cardinality at most g N  such that 

for each y in Y, j = 1, 2, and in the case 1 < p < 2: 

( 1 / 2 + C ( p -  e f f r t n ½  8 ~-~ (log N)  { )  ],Ay,,~.(~,., 1) (logn) 
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Denote for j 1, 2 the injection from Lv(M j, VtMj) to LI(Mj, viMj) by 'j and ~p,1 

let P be the conditional expectation projection from LI(M, v) onto JI[LI(-N, r)] 

followed by J11. Thus u* = BPi~,llM1J1A + BPi~,tlM2J1A and 

2 
y~ZN'2)(U) < ~ v~N)([BPiJp,lIMjJIA]*) 

j = l  

2 

<- Z II1M~J1A[] Iliip,lll[]BPll 
j = l  

1_ 

-< \ 2  + C ( p - 1 )  4 (~ )~ ( l o g n )  ' ( logN) 4)  IIAIIIIBII~v(M~)~ 
j----1 

1 

( _< IIAll IIBII 1 + 2 C ( p -  1 ) ~ ( ~ ) 2 ( l o g n )  4 (logN)~ 

n ~ ~ N ) ~ /  " _< [IAII [[B[] (1 + 2C(p -  1)~-~72 ( ~ ) 2 ( l o g n )  4 (log 
/ 

This completes the proof when 1 < p < 2; the other case is similar. • 

Suppose that dim(X) _< n, u: X ~ Y is a linear operator and THEOREM 3.2: 

e > O. Then, 
Irp(U) ~_ (1 + efir(m)(u), 

as long as 

(( (i) 1 < p < 2 and m >_ K ( p -  1 )~e-2n( logn)  ~ log ( p -  1)P-~e-2n 

for some absolute constant K, or 
(ii) 2 < p < oo and m >_ Kpe-2ng(logn)21og(e-2n~). 

Proof." Without loss of generality, we can assume that dim(Y) _< n. By duality 

IT-J, Theorem 24.2], it is enough to prove that 

~'~)(v) < (1 + e)vq N (v) 

for all v: Y ~ X and all positive integers N >_ n. Iterating Proposition 3.1, we 

get for all k (with (~)kN _> n) and for 1 < p < 2 that 

Uq([Z.]~N,2~)(u) < 
k 2 ~ 

YI I+C(p-1)F'~ n (logn)' (log[(Z)J-IN]) ~} ~N)(u). 
J='  ( ~ ) J - ' N  
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The product on the right hand side of the above inequality is smaller than 1 ÷ e 

as long as 

! 

( p - l )  P-~ ~ (logn) 4 (log [(~)k N] )  ~_<be, 

(where ~f = 5(C) is an appropriate positive constant). Put  m = (~)k N; then, as 

long as m _> ~ ' ( p -  1)P-~e-2n(logn) ~-~ log (p - 1) ~ e-2n 

This completes the proof when 1 < p < 2; the case 2 < p < co is similar. • 

Remark: As we have presented it, the proof of Theorem 3.2 does not recapture 

the result of Szarek mentioned in the introduction. Actually, our approach does 

work when p = 1 and the technical difficulties are easier in this case because the 

entropy considerations of Section II are not needed. 

IV. Examples and concluding remarks 

For p > 2, 7r(k)(g'~) < kS,  while lrp(g~) > V / ~  [T-J, Theorem 10.2]. Conse- 

quently, Theorem 3.2 is precise except for the log n terms. 

It is natural to ask what value of k is needed for r (k) (u) to well-estimate 7rp(U) 

for a general operator u of rank n. When p = 1, Figiel-Petczynski [T-J, p.184] 

checked that k must be exponential in n. The authors and J. Bourgain checked 

that  a result of Bourgain's [B] yields that for 1 < p ¢ 2 < co, k grows faster than 

any power of n. 

PROPOSITION 4.1: Let 1 < p ¢ 2 < co and C < co. Suppose that for each 

s = 1, 2 , . . . ,  k8 satisfies 

for all operators u of rank at most  s. Then for all K < co, kss - K  ~ co as 

N ~ c o .  

Proof'. Fix l < p ~t 2 < co, K ,  C, and let h > O with hK  < 1. G i v e n N = 2  '~ 

for some n, we identify L N with Lp(G), where G is the group { -1 ,  1} n with 

normalized Haar measure, dg. 
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= _ mlo_ n L e t E  span{ws: lS l>n-m}where -~  ~ , - 5 ; s o d i m E - ~ ( ~ ) m < N  ~. 

Here we follow Bourgain's notation [B]; for S C {1 , . . . ,  n}, ws = 1-Iies ri, with 

r~ the i-th coordinate projection (Rademacher) on G. L e t  jE,p be the formal 

identity from Eoo to L N. We shall use Bourgain's result [B] that if T is an 

operator on L N which is the identity on E and IITII < C, then t raceT ,,~ N 

(meaning Itrace (I - T)I = o(N)), to prove that if 

]Qp( k ) [ ,i E "~ ,j~,p, < Cvp(jE,p) (= C), 

then for large N, k > N ~K > (dimE) K. This gives the dual form of the 

conclusion of Proposition 4.1. 

For notational convenience, set a = jE,p and suppose that  for certain k we 

have a = ~ i  ai with ~ i  v~(cti) < C. This means that  there are factorizations 

T~ k .~_~ k 7i N 
E ~ e~ ep ~ Lp 

of ai with 117/11 = [[Ai[[ = 1, Ai diagonal, and E i  7i[[ < C. This diagram also 
1 L gives that  ~ i  Vl(ai) < Ck - , .  Extend Ti to a map ri: L N --+ ~ with II~ill = 1, 

set &i = 7iAiT"i, and let & = ~ i  &i. Then 

Ul(&) _< ~--~ul(&i) < Ck 1-1/p and rp(&) = up(&) < C. 
i 

Now replace & by its average/} over the group G, defined by 

fl= f Tg&Tadg ( g - l = g  in G). 
J G  

The operator/} is translation invariant (a multiplier) and satisfies the same 

conditions as &; namely, 

~lE = a ,  Vl(fl) < ckl-~,  7rp(~) < C. 

Since B is translation invariant, Haar measure on G is a suitable Pietsch measure, 

which means that [[Bip,oo[I < C. Thus trace (~ip,~o) ,,, N by Bourgain's result 

[B]. However, 

Itrace (~ip,oo)l <_ l/l(~ip,oo)Ilip,ooll < Ckl-1/pN 1/p, 

which is o(N) if k <_ N 6K. • 
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